有五险没一金。
与矿指定的派遣公司签订合同,交纳五项社会保险,与正式工同工同酬,月工资6000-10000元,矿上食宿条件优越,住宿免费。
赤峪煤矿位于山西省吕梁市文水县,是新建矿井,位于国家规划的十三个大型煤炭基地之一晋中基地西山矿区内。
安徽宿州煤层气生产井试验调查简介_黄晓明
煤炭在我国一次能源消费中占有相当大的比重。我国煤炭储量和产量主要集中于北方,尤其是“三西”地区(山西、陕西、内蒙古西部),而煤炭消费重心在东部和中南地区,从而形成了“北煤南运、西煤东调”的格局。“三西”煤炭外运主要依赖铁路,随着我国电力需求旺盛使“三西”煤炭外运量持续快速增长,特别是2003年底以来,全国各地用电量继续攀升,各大电厂存煤频频告急,“三西”煤炭外运紧张局面不断加剧,导致原本薄弱的铁路煤运通道依然是制约能源乃至国民经济发展的瓶颈。同时,“三西”煤炭外运铁路通道的不畅,不仅给国民经济发展和人民生活造成了负面影响,也给其他运输方式带来了巨大压力,导致公路严重拥堵、水运严重压港、物流成本激增等。
完善“三西”煤炭外运铁路网络布局,缓解北煤外运的紧张状况,就成为亟待解决的重大课题。国家发展和改革委员会综合运输研究所董焰研究员曾参与北煤外运系统规划课题研究,本刊记者日前就煤运新通道规划研究的相关问题对他进行了专访。
“三西”煤炭主要外运通道现状
记者:作为北煤外运主要通道,“三西”煤炭外运通道的现状如何?
董焰:“三西”地区(山西、陕西、内蒙古西部)煤炭探明保有储量5501亿多吨,占全国煤炭探明保有储量的55%,是我国煤炭重要的产区和煤炭供应及出口基地。我国13个大型煤炭生产基地中,晋北、晋中、晋东、神东、陕北、黄陇和宁东等7个在“三西”地区。“三西”地区是我国煤炭的主要调出区,所生产的煤炭除了本地区消费外,约有2/3供应各个缺煤省(区、市),预计2007年“三西”煤炭调出量约8亿吨。“三西”煤炭外运通道是我国北煤南运、西煤东运的最重要通道,由铁路、公路、海运、内河等几种运输方式共同组成:铁路运输由北、中、南三大通路组成;海运下水主要港口为秦皇岛、唐山、天津、黄骅、青岛、日照、连云港等港口,接卸港主要为华东、中南沿海各港口;长江、徐州—南京大运河也承担了相当数量的煤炭下水运输任务。
铁路煤炭外运通道现状。目前根据“三西”煤炭生产和消费由西向东、从北至南的流向,已形成了由大秦铁路、丰沙大铁路、京原铁路、集通铁路、朔黄铁路、石太铁路、邯长铁路、太焦铁路、侯月铁路、陇海铁路、西康铁路、宁西铁路等12条干线煤炭外运通道。通常,根据这些铁路通道的地理位置、煤炭来源和去向,将其分为“三西”煤炭外运北、中、南三大通路:北通路由大秦铁路、丰沙大铁路、京原铁路、集通铁路、神朔黄铁路组成;中通路由石太铁路和邯长铁路组成;南通路由太焦铁路、侯月铁路、陇海铁路、西康铁路和宁西铁路组成。2006年“三西”煤炭铁路外运量为68200万吨,其中:北通路外运42700万吨,占铁路外运总量的62.61%;中通路外运6500万吨,占9.53%;南通路外运19000万吨,占27.86%。
“三西”煤运北通路以动力煤为主,主要运输晋北、陕北和神东煤炭生产基地至京津冀、华北、华东地区以及至秦皇岛、唐山、天津、黄骅等港口的煤炭,是“三西”煤炭外运的主要通路。中通路以焦煤和无烟煤为主,主要运输晋东、晋中煤炭生产基地至华东、中南地区以及至青岛港的煤炭。南通路以焦煤、肥煤和无烟煤为主,主要运输陕北、晋中、神东、黄陇和宁东煤炭生产基地至中南、华东地区以及至日照、连云港等港口的煤炭。
“三西”煤炭基地是我国最大的煤炭生产、供应地,北路是其外运最主要的通道。与此相应,北方沿海煤炭下水港装船能力也高度集中在与北路通道配套的秦皇岛、天津、唐山、黄骅等4个港口,2006年4港完成煤炭吞吐量34361.67万吨,占北方港口煤炭吞吐量的83.44%。估计在今后相当长的时期内,北路通道的煤炭下水港将继续承担更多的煤炭下水量,北路外运通道仍然是“三西”煤炭基地煤炭外运的主通道。
记者:“三西”煤运通道还存在哪些问题?
董焰:“三西”煤炭铁路外运系统总体上主要存在各通路总体能力严重不足、通道总体布局不够合理、前后方集疏系统不配套、管理体制制约运力配置、无力顾及客运和“白货”、运用车辆严重不足等六个方面的问题。目前来看,以下两个方面的问题比较突出:
一是随着煤炭开发重点从山西省逐渐向内蒙西部和陕西省转移,承担两省区煤炭外运的主要通路,包括京包、大准、陇海三线能力长期紧张。虽然在西康线、宁西线建成后,陕西省的外运通路能力紧张得到一定程度的缓解,但目前两线均为单线,还无法完全适应东部地区煤炭需求的大幅度增长。
二是中通路石太线能力长期不足的矛盾不断加剧。由于北通路、南通路分别有大秦、朔黄及侯月、太焦两大煤运通道,而中通路长期没有建设新的煤运线路,既有的邯长线标准较低,无法发挥应有的作用,石太线还要大量承担大量的非煤和旅客运输,有相当大一部分煤运只能通过北通路和南通路进行分流,增加了运输成本。
北煤外运新通道建设的必要性
记者:您在不同的场合多次提出应尽快开展煤运新通道的规划与建设,煤运新通道建设的必要性表现在哪些方面?
董焰:首先,从铁路煤运运力配置来看。根据研究预测,2010年我国全国煤炭产量约27亿吨,全国煤炭陆上运输量21.74亿吨,产运比为80.50%,其中铁路运输量18.36亿吨,公路运输量3.38亿吨。晋陕蒙宁地区煤炭调出量预计为9.75亿吨,北方沿海港口煤炭一次下水量5.21亿吨,其中秦皇岛等7个主要港口就占到了5.05亿吨。相应地,铁路煤运通道的运力也必须有较大幅度的增长,才能满足铁水联运的需要。
如何增加运力?单靠既有铁路扩能是难以实现的,必须开辟新通道。就北通路来看,2006年,北通路中大秦线外运煤炭25400万吨,占北通路总外运量的59.48%;丰沙大线外运4200万吨,占9.84%;京原线外运1300万吨,占3.04%;集通线外运600万吨,占1.41%;朔黄线外运11200万吨,占26.23%。其中,大秦线与丰沙大线共用一套集煤系统,由于煤炭生产基地资源和生产能力限制,大秦线达到2亿吨以上时,将挤占丰沙大煤炭外运量,实际煤炭总外运量增长并不多。京原线复线或电气化改造技术上十分困难,经济上代价过高,且其外运煤炭主要来自轩岗和西山矿区,此二矿区经过多年的开采,剩余的储量无法满足大规模增产的需要。同时,西山矿区也是石太线和侯月线外运煤炭的供应地,如京原线扩能,大规模增加煤炭外运量,将势必影响大秦、丰沙大、石太和侯月等线煤炭的集运。集通线外运的煤炭主要依靠大包线,而大包线又是大秦线与丰沙大线的煤炭集运线。在大秦线不断扩能,丰沙大线外运量不断减少的情况下,大包线集运的煤炭根本无法保证集通线的供应。另一方面,随着东北地区煤炭资源渐趋枯竭,吉林和辽宁等地的煤炭供应除依靠蒙东的褐煤外,还将主要依靠集通线和沈山线运输“三西”的煤炭。集通线和沈山线运输的煤炭应主要保证东北地区的供应,而不应再转运至南方沿海地区。因而,集通线能力扩得再大也不能解决北煤南运的问题。因此,设想北通路将来外运煤炭达到8亿吨,是不切合实际的。
其次,大秦铁路扩能存在的问题。作为一条设计能力为1亿吨的煤运专线,大秦铁路近年来通过扩能改造,年年创造新纪录:2004年运量突破1.5亿吨,2005年突破2亿吨,2006年则突破2.5亿吨,为有效缓解中国煤电油运紧张状况发挥了积极作用。目前,大秦铁路日均开行1万吨重载列车达34.6列,每日开行2万吨重载列车15列。
扩能2亿吨以上的主要问题包括:一是能力问题。北京交通大学胡思继教授研究认为:当大秦铁路运能达到3亿吨以上,必须减少维修天窗时间;当运能达到3.7亿吨以上时,必须将列车追踪时间降低到15分钟以下,列车运行时速至少提高到80公里。在重载条件下,还要提高列车时速,经济上是不划算的,世界上也是从未有的。二是煤炭资源问题。大秦铁路外运的煤炭主要来源于大同矿区和平朔矿区。大同和平朔的煤炭资源经过多年开采,目前储量已十分有限,仅能维持现有生产水平,大秦铁路煤炭来源重心不得不向西转移到准格尔、东胜一带,大秦线现有的煤炭集运系统已完全不能适应,必须进行大规模改扩建。三是煤炭集运问题。大秦线与丰沙大线共用一套煤炭集运系统,由于煤炭生产基地资源和生产能力限制,大秦线达到2亿吨以上时,将挤占丰沙大煤炭外运量,实际煤炭总外运量增长并不多。同时还有集运线路的问题。四是煤炭疏运问题。目前天津港下水煤炭主要靠丰沙大线供给,由于大秦线挤占了丰沙大线的煤炭外运量,大秦线目前不得不从北京枢纽内向京山线分流煤炭,增加了北京枢纽的压力。如果大秦线煤炭运量达到3亿吨以上时,北京枢纽能力不足,将导致天津港下水煤炭量将受到影响。五是煤炭运输风险问题。目前,大秦铁路煤炭运力占“三西”煤炭外运铁路煤运总运力的37.24%。从煤炭运力布局上看,这既不安全,也不合理。煤炭是我国最重要的战略物资之一,且不说大秦铁路完成4亿吨煤炭运量从技术上是否靠得住,单从战略上考虑就存在很大风险。正如谚语“不能把所有鸡蛋都放到一个篮子里”所说的,我们不能把涉及我国经济命脉的“宝”都压在大秦铁路上,而应当多有几条能力有调节余地的煤运大通道。
第三,促进铁路经营管理体制改革。神华集团筹资修建的朔黄铁路是拓宽筹资渠道、鼓励多方建路的一个成功典范。在近年来煤炭运输紧张的状况下,朔黄铁路起到了缓解运力紧张的重要作用。不难想象,如果没有朔黄铁路,煤炭运输将会陷入何种困难的境地。2006年,朔黄铁路煤炭运量已占“三西”煤炭外运铁路煤炭总运量的16.42%,且运力还有提升空间。在2004年煤炭市场价格一路飚升的情况下,朔黄铁路起到了平抑煤炭价格的重要作用。2006年,朔黄铁路公司外运煤交重突破1.11亿吨,连续六年实现了外运煤交重千万吨级的快速增长。虽然朔黄铁路在运力调配上存在这样或那样的问题,但是这在很大程度上恰是由于目前铁路管理错位造成的。
根据国务院批准的《中长期铁路网规划》,未来近20年间,铁路的建设任务十分繁重,而铁路建设资金短缺的矛盾尤为突出。最近,铁道部也在积极谋划拓宽融资渠道。目前有多家国有企业和民间资本愿意为新的煤运通道提供资金,何乐而不为?鼓励其他资本进入铁路行业并修建新的煤运通道,有利于缓解煤炭运力紧张的状况,也有利于我国铁路的发展。煤运新通道的建设,可为铁路发挥社会积极性、吸引社会资金开辟一条新路子。新通道多家合资建设、运营的方式,将为铁道部进一步深化体制改革、筹措建设资金、引入现代化管理等积累经验。
北煤外运系统新通道建设的经济和社会效益
记者:课题组对煤运铁路新通道的规划和建设提出了怎样的设想?新通道能带来哪些经济和社会效益呢?
董焰:对于北煤外运铁路新通道,神华集团、大唐国际和国投公司等均提出了不同的方案设想,有代表性的为以神华集团为代表的北线方案和以大唐国际为代表的南线方案。结合南北两线方案的优缺点,从我国煤炭生产和消费布局、铁路网和港口布局以及未来我国发展战略考虑,课题组对煤运新通道的规划建设提出了建议。新通道线路走向近期从包神线巴图塔经天成、兴和至张家口、密云水库北侧,在遵化跨大秦铁路和京秦铁路,在唐山跨京山铁路后分为两条线,一条向南至曹妃甸港,一条向南至京唐港。远期铁路西端延至银川,宁东煤田。初期建设里程约800多公里,总投资300亿元左右,平均每正线公里造价为3750万元左右。
煤运新通道的建设将具有很大的经济、社会效益,主要表现在以下几个方面。
一是降低运费的效益。目前我国铁路运输能力持续紧张,一方面导致运力“寻租现象”,增加了中间费用;另一方面,迫使大量煤炭转移到公路。这种不合理的运输方式,不仅增加了用户的成本,也无效耗费了社会资源。煤运新通道的建设将减少铁路运力“寻租现象”和公路运煤现象,降低社会运输成本,经济社会效益显著。有关研究测算表明,新通道建成后,煤炭价格可下降20%~25%。
二是节省运输时间的效益。目前北方主要港口的重点计划内煤炭存在不同程度的压船现象,这既有煤炭价格因素,也有运力紧张的原因。煤运新通道的建设开通,在缓解煤炭运力紧张状况的同时,减少煤炭运输过程中的中间环节,缩短煤炭运输时间,加快煤炭供应,有明显的社会经济效益。
三是煤炭运输安全的效益。为保证国民经济和社会发展对煤炭的巨大需求,承担煤炭运输主要任务的铁路通道,如大秦铁路、朔黄铁路、丰沙大铁路、京原铁路等都处于超负荷运转状态,缺少能力弹性,也缺乏应付突发事件和灾害的余地。一旦某条运输通道出现情况,将给国民经济带来很大的负面影响。煤运新通道的建设可大大增加煤炭运输的安全性。
四是改善环境的效益。铁路运输本身的技术经济特征决定了长距离煤炭调运的最经济合理的方式是铁路运输。目前铁路运力紧张,难以及时、安全地保证煤炭运输供给。在此情况下,公路运输承担了大量本应由铁路承担的煤炭运输任务。据初步统计,2006年约有3.5亿吨煤炭是通过公路调运的。公路运输煤炭一方面是以汽油换取煤炭,另一方面也对生态环境和大气环境产生了更大的污染。煤运新通道的建设将改善煤炭运输结构,产生巨大的环保效益。
记者:除了这些直接的经济、社会效益之外,煤运铁路新通道还能带来哪些间接效益?
董焰:煤运新通道的建设将对国民经济和社会产生较大的间接效益,其影响较上述效益更为深远。
首先,铁路是我国目前惟一政企不分的部门,目前的管理和投融资体制难以适应《中长期铁路网规划》的要求,煤运新通道的建设将在管理体制和投资体制方面有所创新,从而推动铁路行业管理体制和投融资体制改革,推进铁路乃至我国综合运输体系的发展。
其次,铁路是基础产业,煤炭是我国经济和社会发展的最主要能源,煤炭运输通道在国民经济发展中是重中之重,其建设导致的关联效应和示范效应十分明显。据初步测算,以目前煤炭运输情况为基础,煤运新通道的建设可以使东南沿海江苏、浙江、上海、福建和广东每年节省社会经济成本3000亿~4000亿元,如果其他配套的资金、原材料、劳动力、市场需求等生产要素充足,将拉动该地区GDP每年上涨1~1.5个百分点。
第三,由于当前运力紧张,铁路运输向煤炭重点倾斜,这是以牺牲“白货”运输的发展为代价的。修建煤运新通道,不仅可以缓解大秦线的运输压力,还可通过海运来缓解陇海、京沪、京九、京广和焦柳等铁路的煤炭运输压力,使铁路可以集中精力提高集装箱和“白货”运力,既有利于优化铁路运力布局,还可使铁路因运输高附加值货物,而提高自身的经济效益。
第四,公路在省内短距离集散煤炭是难免的、也是合理的。但近年我国用汽车跨省长距离运输煤炭,实属铁路运输能力不足的无奈之举。2005年,铁路煤炭外运能力有较大增长,加之公路严抓超载,汽车跨省调动煤炭的现象有所好转。要从根本上解决这种不合理运输状况,必须使铁路煤炭外运能力紧张局面彻底缓解。煤运新通道建成后,保证了我国煤炭市场的正常供应,将有利于杜绝公路跨省市大批量运输煤炭的不合理状况,提高我国道路运输的安全性。
煤炭运输需求在相当长时期内将持续快速增长,因此修建煤炭运输新通道是十分必要的,也是紧迫的。为尽早缓解煤炭运输紧张状况,建议加快煤运新通道的建设方案研究,争取尽早开工建设,“十一五”期间形成能力。
你需要的问题应该很全了. 新闻上的.
黄晓明1 F.Andrew2 莫日和1 王洪洲2 林亮1
黄晓明,中联煤层气有限责任公司,邮箱:huang-cucbm@sina,电话:64298881。
(1.中联煤层气有限责任公司 北京 1000112.加拿大英发能源公司 安徽宿州 235200)
摘要:本文从地质及储层特征等技术层面上探讨了淮北煤田芦岭矿区煤层气井的生产条件,这些生产试验井的钻探目的是(1)评估煤层气的生产特性,(2)确定储层的排采条件,(3)评价并改进完井技术,进而(4)全面评估煤层气生产所面临的问题。勘探结果显示该井区煤层发育稳定、内生裂隙发育、煤层气含气量中等-偏高,含气饱和度较高,表明具有较好的煤层气生产潜力。300m井间距的煤层气生产试验井组已于2010年4月投产,本文着重探讨了CLG09V-01井的煤层气生产条件。
关键词:煤层气生产试验井 煤层 等温吸附实验 煤层气生产条件
Technical Studies of the CBM Pilot in Luling Coal Mine Area, Suzhou, China
HUANG Xiaoming1 F. Andrew2 MO Rihe1 WANG Hongzhou2 LIN Liang1
(1. China United Coalbed Methane Co. Ltd., Beijing 100011, China2. Canelite Energy, Suzhou 235200, China)
Abstract: This paper is a technical approach documenting geology and reservoir property studies of Luling coal - mine CBM pilots. The pilot wells were drilled to (1) assess gas productivity, (2) determine if the reser- voir can be dewatered, (3) evaluate and improve completion techniques, and (4) assess full-field development issues, and it has showed a high CBM potential for the well developed coal seams with a good cleated coals, and the medium gas contents with a comparatively high saturated coals of these wells. The pilot wells at 40-acre well spacing were put on production in April 2010, and this paper focus primarily on the productivity of the CLG09V- 01 well.
Keywords: CBM-pilot; coal seams; adsorption isotherms; CBM productivity
安徽宿州芦岭煤矿位于淮北煤田的东南缘,距宿州市20km,矿区面积23km2,煤炭年生产能力180万t(中煤地质总局,1996),矿区同时位于中联公司拥有探矿权的宿南煤层气勘查区块的东部(图1)。宿南煤层气区块面积约850km2,是我国第一个与外国公司签署的中外合作煤层气勘探开发项目,目前外方作业者为加拿大英发能源公司。本次调查工作主要集中在芦岭矿区范围内施工的一口煤层气参数+生产试验井,CLG09V-01井。该井连同与其相关的300m井间距的生产井组已于2010年4开始进入煤层气排采试验阶段。包括本区在内的整个宿州地区一直是煤层气勘探开发的热点地区,也是包括煤矿、油气公司和煤层气专业公司针对煤层气资源勘探投入较大、研究程度较高、开发利用较为成熟的地区之一。通过持续不断的勘探投入,该地区的煤层气商业开采(结合瓦斯治理)已初具规模。早在20世纪90年代初,依托联合国煤层气资源评价项目在包括芦岭矿区在内的整个宿南煤层气区块范围内施工了两口煤层气参数井(CQ-4,5井),取得了较好的勘探成果。1998~2002年,美国德士古(Texaco)石油公司作为第一个外方合作者在距芦岭煤矿西南15~20km范围内施工了9口煤层气参数井,包括一个300m井间距的生产试验井组,最高单井产气量为1700m3/d,最低500m3/d。2004~2008年,芦岭煤矿在距CLG09V-01井东南5km的煤矿塌陷区施工了7口煤层气生产井,井间距250m,初期单井最高产气量为3000m3/d,投产两年多以来,目前单井产量稳定在1000m3/d左右,所生产的煤层气供煤矿瓦斯电厂发电,实现了煤层气的商业利用。
图1 安徽宿州宿南煤层气区块煤层气勘探开发形势图
1 地质特征
(1)构造
淮北煤田位于华北板块的东南缘,区内构造主要表现为在东西向隆起带的基础上,受北北东向逆冲断裂控制而形成的一系列近南北向的断块。导致古生界地层呈北北东向展布,地层倾向偏东,倾角一般为23°。
芦岭矿区位于淮北煤田东南缘,北界为东西向的宿北断裂,南部靠近板桥断裂,这两条东西走向、倾向相向的同生正断层构成了一个区域性的地堑,对矿区的煤系地层沉积起到控制作用。芦岭煤矿东界为一北西向的逆断层,对煤系地层起到明显的改造和控制作用,矿区呈北西向展布,地层北倾,使其在淮北煤田具有鲜明的构造特点。煤田东部逆冲推覆构造发育,从东向西呈叠瓦式推覆,矿井下常见层滑小构造,对采煤有较大影响。矿区周边燕山期火山作用较为频繁,主要表现为酸性火成岩侵入体,多以岩床、岩株和岩脉的形式侵入到古生界沉积地层中。其中,下二叠统山西组地层受岩浆接触变质和岩浆热力变质作用明显,煤质变化大,煤类复杂,以贫煤,无烟煤,天然焦为主。然而,岩浆作用主要发生在宿北断裂以北地区。芦岭矿区受岩浆岩侵入体的影响较小,煤变质程度相对不高,以气煤为主。
(2)地层
芦岭矿区所处的两淮地区在沉积地层上属于南华北地层分区,晚古生界地层为一套三角洲体系和多重障壁体系交替沉积,含多层可采煤层(中煤地质总局,2001)。根据沉积旋回和岩性组合特征,将地层自下而上划分为本溪组、太原组、山西组、下石盒子组、上石盒子组和石千峰组。CLG09V-01井是在芦岭矿区施工的一口煤层气参数+生产试验井,钻井位置见图1。该井所钻揭的地层主要包括石炭系太原组地层、二叠系山西组和上、下石盒子组地层,以及约250m厚的新生界松散地层。本文着重讨论与主要目的煤层相关的下二叠统煤系地层的岩性组合特点(图2)。
从图2中可以看出,山西组10号煤层的电性特征明显,结构稳定,厚度为2.69m。其直接底板为砂质泥岩,厚3.38m,含水性弱,渗透性较差。其下部紧邻地层到石炭系太原组灰岩顶界之间为厚层状的粉、细砂岩和砂质泥岩间互,表现为高伽马和中高电阻率特征,弱含水,渗透性好于煤层底板。10号煤的直接顶板为6.08m厚的细砂岩,纯净且渗透性较好。传统的煤层气地质理论认为,渗透性好的煤层顶、底板不利于煤层气的保存。然而根据我们多年的煤层气地质勘探实践发现;较好的渗透性有利于煤层气的排出,从而促进了煤层气的大量生成,有效地提高了煤储层的煤层气含气饱和度(黄晓明等,2010),这点在本文后面的讨论中再次得到印证。
下石盒子组地层中包含了两套主要目的煤层。8号煤层厚达9.19m,但井身结构不稳定,煤芯破碎,扩径明显。直接顶、底板为砂质泥岩,含水性弱,渗透性较差。但其上部紧邻地层为10m厚的细砂岩(见图2),渗透性好,若因断层错断导致煤层与该渗透层直接接触,可有效地提高煤层的排烃效率,从而提高煤储层的煤层气含气饱和度。7号煤层厚2.36m,顶、底板为泥岩,含水性弱,渗透性差,内生裂隙发育,具有较好的煤层气渗流通道,但煤层顶、底板的封闭性在一定程度上影响了其生烃效率。
CLG09V-01井区的上、下石盒子组地层分界在井深510m处,以紫斑状铝质泥岩为地层划分标志层。上石盒子组地层由紫、黄绿和杂色砂岩、粉砂岩和泥岩互层组成。在宿南煤层气区块其他地区较为发育的3号煤层,在本井区不发育。
(3)水文地质
淮北煤田二叠系含煤地层含水性弱,断层破碎带一般为泥质充填,亦为弱含水性。本区主要含水层包括:新生界松散地层含水层2~3层,一般厚5~20m,单位涌水量0.26~1.21L/s·m,最下一层含水层直接覆盖在煤系地层之上。石炭系太原组灰岩含水层位于二叠系煤系地层之下,单位涌水量变化较大,在本井区涌水量极小。新生界及太原组灰岩含水层对芦岭煤矿无直接充水影响。二叠系煤系地层中的砂岩裂隙水是矿区的直接充水水源,但因其含水性弱,对煤矿开采和煤层气生产不造成重大影响。
图2 宿南煤层气区块芦岭矿区CLG09V-01井实钻地层剖面
2 储层特征
(1)煤岩、煤质特征
7 号煤煤岩成分以亮煤为主,暗煤次之,内生裂隙发育,煤芯呈块状,玻璃光泽,断口呈阶梯状,网状结构。煤显微组分含量:镜质组为78.9%,惰质组为17.4%,壳质组未见,无机组分占12.6%,镜质体反射率为0.71%。煤视密度为1.37,灰分为21.97%,挥发分为37.84%,固定碳含量为83.55%。
8号煤煤岩成分由亮煤和暗煤组成,宏观类型为半亮型煤,条痕为黑灰色。煤芯十分破碎,以至于裂隙无法描述,少部分小碎块断口为参差状,呈线理状构造。煤显微组分含量:镜质组为76.2%~85.5%,惰质组为12.0%~19.5%,含微量壳质组成分,镜质体反射率为0.76%~0.83%。无机组分含量不高,平均为7.6%,一般为分散状粘土,个别呈层状或侵染状形态。煤视密度为1.32~1.38,灰分为11.72%~16.78%,挥发分为31.08%~33.74%,固定碳含量为84.88%~85.84%。
10号煤煤岩成分以亮煤为主,暗煤次之,宏观类型以半亮型煤为主,内生裂隙十分发育,裂隙面光滑平整,面裂隙40~42条/5cm,端裂隙28~32条/5cm。煤芯呈块状,条痕为灰黑色,呈金属光泽和玻璃光泽,断口参差状,具孤立网状结构,裂隙被黄铁矿部分充填。煤显微组分含量:镜质组为76.3%~88.1%,惰质组为10.0%~18.8%,壳质组为1.95%~5.0%,无机组分占2.2%~16.2%,镜质体反射率为0.83%~0.90%。煤视密度为1.36,灰分含量平均为10.05%,挥发分平均为36.69%,固定碳含量为82.57%~85.57%。
(2)含气量、等温吸附特性
7 号煤的两个煤芯解吸测试结果表明,其空气干燥基含气量为6.10~6.68m3/t;干燥无灰基含气量为7.30~8.00m3/t,吸附时间变化在4.60~4.67天,平均4.64天。气体成分以甲烷为主,占96.67%~96.82%,氮气含量2.92%~2.96%,重烃含量极微。等温吸附实验表明,7号煤的原煤饱和吸附量为12.87cm3/g,干燥无灰基饱和吸附量为16.71cm3/g,兰氏压力为2.21MPa。从等温吸附曲线上可以看出(图3),原煤等温吸附曲线平缓,干燥无灰基曲率变化明显。
图3 宿南煤层气区块芦岭矿区CLG09V-01井煤芯样品等温吸附曲线
8号煤的18个煤芯解吸测试结果表明,其空气干燥基含气量为8.05~9.85m3/t;干燥无灰基含气量为9.49~11.26m3/t,吸附时间变化在1.34~2.35天,平均2.08天。气体成分以甲烷为主,占94.10~98.25%,氮气含量0.65%~4.87%,重烃含量0%~0.39%。等温吸附实验表明,8号煤的原煤饱和吸附量范围14.89~17.01cm3/g,干燥无灰基饱和吸附量范围18.18~20.12cm3/g,兰氏压力平均为2.35MPa。从图3中可以看出,8号煤等温吸附性与7号煤相比,其原煤曲线和干燥无灰基曲线相近,曲率变化明显增大。
10号煤的4个煤芯解吸测试结果表明,其空气干燥基含气量为7.28~8.69m3/t;干燥无灰基含气量为8.82~10.42m3/t,吸附时间变化在1.37~2.50天,平均1.95天。气体成分以甲烷为主,占94.10%~95.79%,比前述两组煤层的甲烷含量略低,氮气含量变化在3.92%~5.41%,重烃含量0.06%~0.11%。等温吸附实验表明,10号煤的原煤饱和吸附量范围为11.44~15.09cm3/g,干燥无灰基饱和吸附量范围为15.91~16.29cm3/g,兰氏压力为2.04MPa。从等温吸附曲线上可以看出(图3),相较前述两组煤层其原煤曲线和干燥无灰基曲线形态最为接近,曲率相对较大。
3 生产条件
煤层气生产条件分析可分为宏观评价和微观评价两种(黄晓明等,2010),这是受煤层气地质属性和其生产工艺双重决定的,也跟从业人员的工作经历密切相关。一般来讲,石油天然气从业人员习惯于从宏观地质条件去分析煤层气的赋存及保存条件,而煤炭地质人员则倾向于从煤岩及煤显微组成等微观特征来分析煤层气的生产条件。
芦岭矿区下二叠统地层主要包含3层可采煤层,分别为下石盒子组的7号煤和8号煤,以及山西组的10号煤。煤层单层厚度较大。煤变质程度相对不高,但随埋深略微增高,煤类以气煤为主。受构造作用影响明显,煤层内部裂隙十分发育。煤显微组成以较高的镜质组含量和较低的惰质组含量为显著特征。煤层气含气量中等偏高,甲烷含量高,重烃含量低。主要目的煤层的原煤饱和吸附量普遍偏低,但含气饱和度不低。下部煤层的煤层气解吸速率要高于上部煤层。
从前述CLG09V-01井的地层发育特征描述中我们可以看出;7号煤层的顶底板为泥岩,渗透性极差,按传统的煤层气地质观念来讲,其对煤层气具有较好的保存条件。然而,从煤层气生成的角度来看,较强的封闭性不利于煤层气的排出,反而会抑制煤层气的大量生成。所幸的是,7号煤层不厚且其内部裂隙十分发育,煤层气的生成才得以持续发生,因此煤层气含气饱和度并不低。7号煤相对较低的含气量与其吸附特性和煤的热变质程度相对较低有关。8号煤层的顶底板为砂质泥岩,渗透性相对较好。然而厚度近10m的煤层却成为其内部煤层气有效排出的障碍,降低了部分煤芯样品的含气饱和度。10号煤层的顶底板为细砂岩,渗透性好,且煤层厚度适中,煤层受热变质程度最高,因此,煤层作为烃源岩其煤层气得以充分生成并持续排出,同时煤层作为储层其煤层气含气饱和度达到并超过100%。
通过以上分析结合煤层的等温吸附特性,我们可以看出:CLG09V-01井山西组的10号煤层具有煤层结构稳定,内生裂隙十分发育,煤层气含气饱和度高,等温吸附曲线曲率大,兰氏压力低的特点,在三个主要目的煤层中,其生产条件最好,初期产量应该最高。8号煤和7号煤也具有裂隙发育,含气饱和度高的特点,生产条件也是比较好的,特别是8号煤层巨厚,是煤层气能够持续高产稳产的保证。7号煤的等温吸附曲线最为平缓,表明解吸条件相对较差,测试数据也表明其解吸天数是最多的,此外,其兰氏压力也较大,而兰氏体积相对不高。
另外,有煤田地质工作者在进行煤层气资源可采性评价工作中,将较高的惰质组显微组分含量作为煤层气可采性最为有利的指标(吴昱,2010)。CLG09V-01井的煤芯样品分析结果表明,本井煤样中惰质组含量相对沁水盆地等要低,但其对生产条件的影响到底有多大,还需更多的实际资料加以验证,至少在本井区看不出有多大影响。本井区三套主要目的煤层煤样品分析结果表明,三层煤的惰质组组分含量几无差别,均普遍偏低,但煤层气解吸时间却相差较大,7号煤解吸时间要比8号煤和10号煤高一倍多,10号煤解吸时间最短。可见,惰质组组分含量不是影响芦岭矿区煤层气可采性的主要因素。
结语
安徽宿州地区位于我国著名的淮北煤田南部,是我国煤层气地质条件和地面条件最好的地区之一,也是我国第一个对外合作勘探开采煤层气的地区。先后有雪佛龙公司、淮北煤矿、米歇尔-米勒公司(William W.Vail et al.,2006)和中联公司等多家煤炭企业、石油公司和煤层气专业公司做过煤层气地质评价,结果均表明该地区煤层气潜力巨大,勘探开发风险较小。
芦岭矿区所在的宿州煤层气区块已有十余年的勘探历程,商业开采也有两年以上,目前的煤层气生产井以直井为主,采取的是套管完井技术,水力压裂或部分注入氮气等增产措施。生产井持续高产稳产,实现了商业化利用,提高了煤矿安全生产保障。
下二叠统山西组的10号煤和下石盒子组的8号和7号煤是本区煤层气的主要气源岩和储集层。原煤镜质组含量高,中等变质程度,煤吸附能力和煤层厚度适中,顶底板条件好,有利于煤层气的生成和富集。煤储层温度高、渗透率相对较大,内生裂隙十分发育,煤层气含气饱和度高,临/储压力比大,有利于煤层气的产出。
10号煤层的储层压力大,含气饱和度高,煤解吸速率高,对煤层气初期产量贡献大。8号煤层厚度巨大,煤层气资源丰富,是煤层气高产稳产的基础,但煤层受构造影响而破碎,在一定程度上影响了其初期产量。7号煤含气量低,但饱和度较高,顶底板封闭性强,使其保持了较高的原始地层能量。三层煤合采可实现优势互补,合理的控制生产节奏,就可借助7号煤和10号煤先期释放的游离气对8号煤层的渗流条件进行有效的改造,从而加快厚煤层中煤层气的持续析出,我们称之为煤储层自改造机理(黄晓明等,2010)。
参考文献
黄晓明等,2010.煤层气地质勘探实例分析[M].苏州:石油工业出版社
吴昱,2010.西山矿区煤层气资源可采性评价[J].中国煤层气,(4)
中国主要煤矿资源图集第三卷.北京:中国煤田地质总局,1996
中国煤田地质总局,2001.中国聚煤作用系统分析[M].徐州:中国矿业大学出版社
William W. Vail and J.Matthew Conrad . 2006Resource Assessment of the Huaibei CBM Concession, Anhui, Chi-na Marshall Miller & Associates