小学五年级数学上册复习知识点归纳总结
第一单元 小数乘法
1、小数乘整数:
意义——同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少,或3个1.5的和是多少。
2、小数乘小数
意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
3、小数乘法的计算方法:先把小数扩大成整数,按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点,积的小数部分位数不够时,要在前面用0补足。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简。
4、规律:一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
5、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
6、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
7、小数四则运算顺序跟整数是一样的。
8、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元 小数除法
1、小数除法的意义:同整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要在余数后面添0再除。
3、除数是小数的除法的计算方法:先把除数扩大,使除数变成整数,再将被除数和除数扩大相同的倍数,然后按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾添上小数点,用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变的性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元 观察物体
1、从不同的角度观察物体,看到的形状可能是不同的,也可能是相同的。2、观察长方体或正方体时,从固定位置一次最多能看到三个面。
第四单元 简易方程
1、在含有字母的式子里,数字和字母中间的乘号,字母和字母之间的乘号,可以记作“·”,也可以省略不写。
加号、减号,除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a ,a 读作a的平方。 2a表示a+a
3、方程:含有未知数的等式称为方程。
方程一定是等式,但等式不一定是方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。(解方程要先写“解”)
方程的解是一个数; 解方程是一个计算过程。
4、解方程的原理:
(1)等式的基本性质
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
(2)10个数量关系式:
加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
5、方程的检验过程:
检验:方程左边 =……
=方程右边
所以, x=…是方程的解。
6、列方程解应用题的步骤:
(1)弄清题意,找出未知数,用x表示。
(2)分析、找出数量之间的等量关系,列出方程;
(3)解方程。
(4)检验,写出答案。
7、和倍或差倍应用题的解答方法:
设一倍的量为x,另一个量根据倍数关系表示为几x。再根据两个量的和或差列出方程。
第五单元 多边形的面积
1、 公式:
长方形:周长=(长+宽)×2 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
底=面积÷高 高=面积÷底
三角形的面积=底×高÷2 字母公式: S=ah÷2
(底=面积×2÷高;高=面积×2÷底)
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
上底=面积×2÷高-下底 下底=面积×2÷高-上底
高=面积×2÷(上底+下底)
2、单位换算的方法:大化小,乘进率;小化大,除以进率。
3、常用的单位间的进率
长度单位:
1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
4、图形之间的关系:
两个完全相同的三角形可以拼成一个平行四边形。
两个完全相同的梯形可以拼成一个平行四边形。
等底等高的平行四边形面积相等;等底等高的三角形面积相等。
等底等高的平行四边形面积是三角形面积的2倍。
如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。
如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。
5、把长方形框架拉成平行四边形,周长不变,面积变小了。
6、求组合图形面积的方法:
(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。
(2)找到计算这些基本图形的面积所需要的数据。
(3)分别计算这些基本图形的面积,然后再相加或相减。
第六单元 统计与可能性
1、平均数=总数量÷总份数
2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
3、求一组数据中位数的方法:
先将这一组数据按照大小顺序排列好,如果这一组数据是单数个,中间的数就是这一组数据的中位数,如果这一组数据是双数个,中间两个数的和除以2就是这一组数据的中位数。
第七单元 数学广角
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:由6位数组成,前2位表示省(直辖市、自治区) ,前3位表示邮区 ,前4位表示县(市),最后2位表示投递局。
3、身份证号码:18位
前六位表示省(自治区、直辖市 ) 、市、县, 7—14位表示出生年月日,倒数第二位的数字用来表示性别,单数表示男,双数表示女,最后一位是校验码。
第一单元 方程
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=
-差
=减数+差
一个因数=积÷另一个因数 除数=
÷商
=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程
的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的
。C、设未知数,一般是把所求的数用X表示。D、根据
列出方程E、解方程F、检验G、作答。
第二单元 确定位置
1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。
3、从
上看,连接北极和南极两点的是经线,垂直于经线的线圈是
,经线和
、分别按一定的顺序编排表示“
”和“纬度”,“
”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元 公倍数和
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的
,其中最大的一个,叫做这两个数的最大
,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是
。举例:3×5=15,15是
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1
一个素数和一个
,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1
的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1
的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用
或
,求最小公倍数用大数翻倍法或
。(详见课本31页内容)
数字与信息
1、我国目前采用的邮政编码为“四级六码”制。第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。
2、身份证编码规则:1-6位数字为
,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。 7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为
,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。18位为
,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用
符χ表示。