1 使用方面
1.1行驶速度
国产汽车等速油耗在中速时最低,低速时稍高,高速时则随车速的增加而迅速增大。这是因为在高速行驶时,尽管发动机的负荷率较高,但汽车的行驶阻力却增大得更多的缘故。低速时,尽管汽车行驶阻力较小,但发动机负荷率降低,燃油消耗率上升,所以百公里油耗会有所增加。经验告诉我们,汽车中速行驶时能够节省燃油的。为了环保,国外有限制汽车最高车速的规定。
1.2挡位选择
在同一道路条件与车速下,虽然发动机发出的功率相同,但挡位越低,后备功率越大,发动机的负荷率越低,因而燃油消耗率也就越高了,使用高挡位时,情形相反。所以,一般尽可能使用高挡行驶,而且在高挡行驶的可能性未用尽以前,不要换人低挡,这是最经济的驾驶方法。
1.3正确地调整与保养
汽车的技术状况对百公里油耗有相当的影响。试验研究表明,阻力较小、载重24.5 kN的汽车在良好的水平路面从30 km/h车速开始摘挡滑行,滑行距离应达200 -250 m。当滑行距离由200 m增至250 m时,油耗可降低7%。
车辆化油器的调整和改进也是一项颇有成效的节油途径。汽车制造厂生产的化油器及其调整数据是考虑全国各种气候、气压等使用条件以及其他性能要求而推荐的。因此对于某一具体汽车,在特定的使用条件下,由熟练驾驶员使用时,确实存在着改变化油器调整数据以节省燃油的潜力。
1.4加挂车
汽车拖带挂车是提高运输生产率、降低成本、节省燃油的一项有效措施。例如,在坡度小于8°,最大坡度11°的道路上行驶的解放CA-141型汽车,如拖挂4~5t的挂车,生产率可提高30%~50%,油耗降低20%~30%。当然,拖带挂车后,汽车总的油耗是增加了,但由于载重量增加,分摊到每吨货物上的油耗却下降了。汽车带挂节油的原因:(1)发动机的负荷增加了,燃油消耗率下降;(2)汽车拖挂时,其重量利用因数较大,表明汽车能够装载的货物重量增加,因而运送单位重量货物所耗燃油便下降了。但使用挂车要综合考虑行驶安全及车辆寿命等因素。我国的使用经验表明,大多数地区以拖挂牵引车总重的70%的挂车为宜。
2 构造方面
2.1发动机
近年来,为了节约能源,控制排气污染,对汽车发动机进行了多方面的研究。目前看来,在现有发动机基础上改进通用的汽油机较经济,同时扩大柴油机的使用范围是最现实的途径。另外,稀薄混合气分层燃烧汽油机也是一种有前途的发动机。
过去从构造上改善汽油机经济性的主要途径是提高压缩比,改善发动机的热效率。当前认为采用更经济的混合气浓度是提高汽油机经济性的一个可行的途径。向发动机各缸均匀地供应混合气,以及化油器点火的最佳调整是保证发动机经济工作的前提。
为了节约石油,不仅轻型货车而且轿车也开始装用柴油机。例如,载质量2~5t的货车中,原联邦德国有95%用柴油机,日本为90%。
2.2传动系
传动系的效率、挡数和传动比都对汽车的经济性有影响。显然,传动系效率越高,表明损失在传动系的能量越少,汽车的燃油经济性就越好。
汽车以不同的挡位行驶时,发动机的负荷率和转速都不一样。因此,在同样的车速下,采用不同的排挡行驶时,发动机的燃油消耗率是不一样的。由此推论,挡位越多,则选用发动机在经济工作工况的机会也多,有利于提高燃油经济性。所以,为了改善动力性和燃油经济性,变速器的挡位数增加了。当然,无级变速可以提供在任何行驶条件下都能使发动机在最经济工况下工作的可能性。
2. 3车重
车重对滚动阻力、上坡阻力和加速阻力有影响,因而也影响到汽车的燃油经济性。载重汽车的“重量利用因数”越大,则消耗材料越少,运输成本和油耗越低。因此,随着生产水平的提高,重量利用因数也逐步提高。例如,美国在20世纪30至40年代,中吨位货车的重量利用因数约等于1。到70年代,重量利用因数已提高到1.5~2.6。近年来,为减轻汽车自重,已越来越多地采用轻质铝合金或塑料制作汽车零件。
2.4汽车外形与轮胎
为了节油,现在对车身外形所产生的空气阻力给予很大重视。据W. H. Hucho的估算,对一辆总质量1.06 t的轿车而言,空气阻力因数值由0.5降至0.3,在公路上行驶的经济性将提高22%。
对于载重汽车、大型货车、半挂车的流线型一般不加考虑,但据资料介绍,高速行驶的一辆长途货车,外形作了改善空气阻力的设计后,每年可节约9120 L柴油。
汽车轮胎构造和气压等对汽车滚动阻力都有影响,从而影响到汽车的经济性。现在公认,子午线轮胎的综合性能最好。由于它的滚动阻力小,与一般斜交帘线轮胎比较,可节油6%~8%。
在良好的硬路面上测量车速在10~20 km/h时汽车的滚动阻力因数与其轮胎气压的关系,得出:当轮胎气压为600、400和200 kPa时,滚动阻力因数相应为0.010准013、0. 017。可见,在硬路面上适当保持轮胎气压的较高值,对减小滚动阻力、降低燃油耗量是有利的。
运输类飞机的持续适航和安全改进规定
777-200的载油量为117,000升,777-200LR的载油量为195285升,波音777-300的储油量更大。而90号汽油的平均密度为0.72kg/L,93号汽油的密度为0.725kg/L,97号汽油的密度为0.737kg/L。
取中0.725*117335=85067.875公斤。大约85吨。0.725*195285=141581.625公斤,大约141吨。
扩展资料随着空运的繁荣,还有一种大家平时接触不到的机型——全货机。例如现在最大的飞机安-225和最先进的全货机波音747-8F。
国际物流巨头都有庞大的全货机机队,例如联邦快递拥有多达638架全货机,包括50架波音767-300F和30架波音777F。
由于客机运营的大部分成本都可以通过客运业务平摊掉(例如飞行、机组、起降费和航务等),所以客机腹舱的盈利更高——65%。早些年国际航空运输协会曾预测全货机的货运总量下滑至30%,从此也能看出客机腹舱的重要性。
-波音777
Z分部 附则
第26.99条 施行时间
本规定自公布之日起30日后施行。
关于《运输类飞机的持续适航和安全改进规定》的编制说明
长期以来,由于运营飞机在结构损伤、电气线路故障起火和燃油箱爆炸等方面存在的安全问题,国际民用航空业运营机队的持续适航安全受到了严重威胁。为此,美国联邦航空局(FAA)在Aloha航空公司波音737飞机航空事故发生后,正式启动了老龄飞机项目,先后开展了针对结构、电气线路和燃油箱防爆的专题研究。经过多年努力研究,自2007年11月8日起,FAA相继颁布了美国联邦航空规章(FAR)第26部及其第1至4次修正案,在适航要求方面,对电气线路互联系统、结构修理和改装的损伤容限资料以及燃油箱安全提出了强制性要求,制定了运输类飞机的持续适航与安全改进措施,增加了设计批准证书持有人(DAH)持续适航与安全改进的责任和作用。
为保证我国民用航空运输安全,有针对性地实施运输类飞机持续适航与安全改进的各项措施势在必行,中国民用航空局紧密跟踪和研究国外适航当局在运输类飞机持续适航和安全方面的最新研究动向和规章修订情况,在充分研究上述FAR-26内容和要求基础上,围绕着FAR-26提出的持续适航与安全改进措施,调研我国航空工业和航空运营人实际情况,广泛听取航空业专家意见,提出适合我国国情的运输类飞机持续适航与安全改进措施,即CCAR-26。
CCAR-26对电气线路互联系统、结构修理和改装的损伤容限资料以及燃油箱安全提出了强制要求,增加了DAH对运输类飞机持续适航与安全改进的责任和作用,对保证运营机队在预防燃油箱爆炸、减少电气线路故障、保证结构完整性等方面起到重要作用。例如:如果执行持续适航与安全改进措施中针对飞机结构的修理和改装的损伤容限检查要求,运营人可以获得飞机DAH提供的损伤容限资料和修理评估指南,可以深入解决随着飞机使用时间增加和使用中维修、改装等带来的大量结构完整性问题。
CCAR-26对运输类飞机电气线路互联系统、结构修理和改装的损伤容限资料以及燃油箱安全等方面提出要求和措施的情况总结如下:
一、电气线路互联系统
1996年,美国环球航空公司一架波音747客机怀疑因飞机线路故障产生的电火花进入飞机燃油箱而导致空中爆炸,机上230人全部遇难。1998年,瑞士航空公司一架MD11飞机失火后坠入大西洋,机上229人全部遇难,尽管最后未能完全确定导致此航空事故的确切原因,但事后的调查发现:在有可能最早起火的客舱位置处,找到的一段客舱娱乐系统导线电缆上发现有凝固铜,此现象表明,该处电缆曾产生过电弧导致铜质导体融化后又凝固,因此最后认为,该导线故障产生的电弧,很有可能就是这起飞机失火坠毁事故的元凶。
根据以上两起事故调查情况以及在飞机日常使用和维修过程中发现的诸多电气线路问题,FAA颁发了一系列有关对导线检查的适航指令,并督促飞机制造厂颁发了相关的紧急服务通告。检查结果表明在老龄飞机中普遍存在着以下四个方面的问题:
1、线路老化;
2、线路连接器受腐蚀;
3、维修工作中对导线的安装和修理不正确;
4、线束被金属碎屑、污物及易燃液体污染。
FAA认为在现有飞机持续适航文件中针对飞机电气线路方面的维护操作标准和相应程序的工作项目不全、检查要求不具体。如,对线路检查要求的标准太粗略,通常将对线路的检查工作项目结合在区域检查任务中,并采用一般目视检查(GVI)的方法,这样可能造成检查对象和目的不够具体和明确(如,检查什么、怎样才是合格的等);检查人员不够专业(由于区域检查任务一般由机械员执行,而非受过线路方面专门培训的电气人员执行)。另外,在现有的飞机维护手册中,对线路安装和修理等方面的合格与不合格判据的描述不够充分和具体。因此,FAA决定对运输类飞机的审定和运行规章进行修订,对飞机电气线路系统的设计、安装和维护要求进行改进,以最大限度地提高所有运输类飞机电气线路系统的安全性。
CCAR-26的B分部第26.11条“电气线路互联系统(EWIS)维护大纲”要求DAH或设计批准证书申请人使用增强型区域分析程序(EZAP)评估和制定EWIS相关的维护任务或程序以及相应执行间隔,或者在维护、改装或修理过程中,尽量减少EWIS污染和意外损坏的预防和告诫信息,以便尽量减少易燃物的积聚、检测EWIS部件的损伤和检测现有维护检查工作中难以有效发现的EWIS安装偏差。同时,要求其制定的含有上述内容和信息的EWIS持续适航文件(ICA)必须以适当和容易识别的文件形式提供给相关人。
DAH使用EZAP制定EWIS的ICA并提交局方进行审查和批准的流程与MRB程序是一致的。EZAP分析程序的主要步骤如下:
第一步:确定飞机区域,包括边界;
第二步:列出区域的详细信息;
第三步:区域中是否含有导线?回答这一问题可从EZAP分析程序中剔除不包含导线的区域;
第四步:确定区域中是否有或者可能会有可燃物质?
第五步:确定是否有有效维护任务来降低可燃物质积累的可能性?大多数营运人的维修工作中未包含关于将可燃物质从导线或邻近区域清除或防止可燃物质积累的维护任务;
第六步:定义维护任务和执行任务的间隔;
第七步:导线是否与主要和备用液压、机械或电气飞行控制管线贴近?当回答“是”时(如2英寸或50毫米),即使区域中没有可燃物质,也要进入到第八步;
第八步:选择导线检查等级和间隔;
第九步:考虑与系统和动力装置和/或区域工作中的现有检查任务合并。
FAA咨询通告(AC)25-27A《使用增强型区域分析程序(EZAP)制定运输类飞机电气线路互联系统(EWIS)持续适航文件(ICA)》提供了对以上EZAP分析程序的详细描述。
二、结构修理和改装的损伤容限资料
飞机的疲劳裂纹是航空安全多年来所关注的问题。由于疲劳裂纹导致了多起飞机的灾难性事故。为了有效解决飞机使用中疲劳裂纹开裂导致的飞机灾难性事故,1978年,FAA颁布了FAR-25的第45号修正案,要求新申请型号合格证的飞机必须符合结构损伤容限要求,并编制ICA,向运营人提供飞机结构的维修方案。1980年开始,FAA强制运输类飞机运营人执行损伤容限检查程序,但当时的检查大纲仅针对飞机基准结构,并没有考虑飞机结构的修理和改装后的检查要求。1988年,Aloha航空公司的一架波音737飞机发生事故,经调查,此事故是由于飞机结构失效所致,其根本原因是当时的飞机维修方案不能解决潜在的飞机修理和改装以及改装的修理所带来的结构疲劳问题。
为解决修理和改装可能带来的结构疲劳问题,CCAR-26的E分部“修理和改装的损伤容限资料”要求DAH制定影响疲劳关键结构的修理和改装的基于损伤容限评估的资料,同时,制定修理评估指南(REG),并提供给运营人。
对于国内DAH和设计批准证书申请人,按照CCAR-26的要求制定修理和改装的结构损伤容限资料时,所要求的技术能力与CCAR-25的第25.571条的要求基本相同,只是所运用的损伤容限分析技术的对象范围扩大。CCAR-25的第25.571条针对的分析对象是飞机基准结构,CCAR-26的要求是对影响疲劳关键件的修理和改装进行损伤容限分析,并给出损伤容限检查要求。
所有进口飞机的DAH基本上都正在进行FAR-26的符合性验证工作(FAR-26作为型号设计的审定基础之一),能够按照要求向运营人提供满足FAR-26要求的持续适航文件。因此,中国民用航空局颁布CCAR-26后,对进口飞机没有实质性影响,只需按照型号认可审查程序,对相关进口飞机的型号合格证数据单(TCDS)更改/STC进行认可审查,要求DAH向国内运营人提供相关的满足CCAR-26要求的持续适航文件。
AC-120-93“修理和改装的损伤容限检查”为DAH和运营人提供了规章符合性的验证方法。
三、燃油箱安全
1960年以来,全世界范围内有18架飞机因燃油箱爆炸而受损或失事,FAA一直在致力于研究防止燃油箱爆炸的措施、修订运输类飞机适航审定标准(FAR-25)。经过多年研究并在广泛征求公众意见和建议的基础上,FAA于2008年7月21日正式发布了“降低运输类飞机燃油箱可燃性”最终政策(73 FR 42444),对FAR-25提出第125修正案。该修正案在FAR-25的第102修正案关于点火源防护要求的基础上强化了对燃油箱内可燃环境的控制,并明确提出燃油箱可燃暴露程度具体可接受的量化指标和分析方法,要求通过显著降低燃油箱暴露在可燃蒸汽环境中的程度,实施降低可燃性的措施(FRM:Flammability Reduction Means)或有效减轻点燃影响的措施(IMM:Ignition Mitigation Means),从根本上解决燃油箱防爆的安全问题。同时,对FAR-26提出第2修正案,在FAR-26中新增D分部“燃油箱可燃性”,对已投入航线运行和正在申请型号合格证以及已取得型号合格证新生产的运输类飞机分别提出追溯性要求,要求飞机(包括在役和在产)的DAH完成对燃油箱及涉及燃油箱的设计更改的可燃性评估,并根据评估结果制定FRM改装措施及相关检查和维修项目,并将这些项目作为适航限制项目纳入维修方案;而对在审飞机的设计批准证书申请人,则要求必须按照FAR-25第125修正案执行。CCAR-26相应采纳了FAR-26的这些要求,并部分调整了要求的符合时间。
CCAR-26的持续适航与安全改进措施的实施可以有效解决飞机在结构、电气线路和燃油箱等方面存在的飞机老龄化产生的问题,进而进一步保持运输类飞机可接受的安全水平。